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Branching Bandits and Klimov’s Problem: 
Achievable Region and Side Constraints 

Dimitris Bertsimas, Ioannis Ch. Paschalidis, Student Member, ZEEE, and John N. Tsitsiklis, Member, ZEEE 

Abstruct- We consider the average cost branching bandits 
problem and its special case known as Klimov’s problem. We 
consider the vector n whose components are the mean number 
of bandits (or customers) of each type that are present. We 
characterize fully the achievable region, that is, the set of all 
possible vectors n that can be obtained by considering all possible 
policies. While the original description of the achievable region 
involves exponentially many constraints, we also develop an 
alternative description that involves only O(R2) variables and 
constraints, where R is the number of bandit types (or customer 
classes). We then consider the problem of minimizing a linear 
function of n subject to L additional linear constraints on n. 
We show that optimal policies can be obtained by randomizing 
between L + 1 strict priority policies that can be found efficiently 
(in polynomial time) using linear programming techniques. 

I. INTRODUCTION 
ONSIDER a single-server multiclass M/GI/l queue with C Bernoulli feedback. In this context, one wishes to de- 

termine a policy which optimizes a linear combination of the 
mean number of customers of the different classes that are 
present in the system. This problem was posed and solved 
by Klimov [IO], who established the optimality of strict 
priority rules. In addition, he developed a fairly simple and 
efficient one-pass algorithm that determines an optimal priority 
ordering. A shorter and simpler proof can be found in [14]. 

In the branching bandits problem, as defined by Weiss [18], 
there is again a single server who serves several customer 
classes and a similar performance criterion. At each service 
completion, however, the served customer is replaced by a 
random number of customers of every other class. This model 
is more general than Klimov’s in that the random numbers 
of new customers need not correspond to Poisson arrival 
processes. 

The branching bandits and Klimov’s problems have impor- 
tant applications in many situations where a single server has 
to be optimally allocated among various customer classes. As 
an example, consider a machine in a job-shop manufacturing 
floor that processes a variety of parts. Klimov’s model can be 
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also viewed as being a network of queues with a single server 
in the network, where external arrivals are Poisson and the 
routing between the various queues Bernoulli. 

Both problems can be extended by imposing some addi- 
tional linear side constraints. For example, we might require 
that the mean queue length is the same for each customer class. 
Such side constraints are usually meant to represent fairness 
constraints. 

Much of the work on the branching bandits and Klimov’s 
problems views these problems as extensions of the classical 
multi-armed bandit problem [6], [17], [18]. In this paper, 
however, we take a philosophically very different approach. 
In particular, we consider the vector n whose components are 
the mean number of customers of each type that are present 
and characterize fully the achievable region, that is, the set of 
all possible vectors n that can be obtained by considering all 
possible policies. Our characterizations are polyhedral; that is, 
they are expressed in terms of linear equality and inequality 
constraints. We are thus able to convert a difficult stochastic 
control problem to one of optimizing a linear cost function 
over the achievable region, and this is a linear programming 
problem. There has already been a fair amount of research on 
such polyhedral characterizations, which we now discuss. 

Gelenbe and Mitrani [7] used conservation laws to show 
that the performance region of a multiclass queue (without 
feedback) can be described as a polyhedron. Closer to the 
subject of this paper, Tsoucas [I61 has derived a structural 
characterization of the achievable region for Klimov’s prob- 
lem, but without giving explicit formulas for some of the 
constants in his characterization. The idea of conservation 
laws was generalized by Federgruen and Groonvelt [5], Shan- 
tikumar and Yao [15], and Bertsimas and Niiio-Mora [2]. In 
[2] also, an explicit characterization of the achievable region 
for Klimov’s problem is obtained. Finally, the authors, in [3] 
and [4], have used quadratic potential functions to develop 
conservation laws for general controlled multiclass queueing 
networks with Poisson arrivals and exponential service times. 
In the network case, these conservation laws do not provide 
an exact characterization of the achievable region but lead 
to bounds for the achievable region which are often quite 
tight. For the special case of Klimov’s problem in which 

potential method of [3] and [4] was shown to lead to an exact 
characterization of the achievable region. 

Given that the achievable region is a polyhedron, the 
problem of finding an optimal policy amounts to a linear 

service times are exponential and preemption is allowed, the 
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programming problem. Since it is already known that optimal 
policies are strict priority rules, it is hardly surprising that the 
extreme points of the achievable region are the performance 
vectors of such priority rules. Note that if linear side con- 
straints are imposed, the performance of an optimal policy is 
still a linear programming problem. In particular, an optimal 
policy can be expressed as a policy that randomizes between 
a number of strict priority rules. In addition, the problem 
of finding the probability with which each particular priority 
rule is to be used is the same as the problem of expressing 
an element of a polyhedron as a convex combination of its 
extreme points. This latter problem can be also solved, in 
principle, using linear programming techniques. 

Unfortunately, the polyhedral characterizations discussed so 
far involve a number of constraints which is exponential in 
the number of customer classes. Therefore, even though linear 
programming problems are solvable in polynomial time, the 
naive application of the preceding ideas to the side-constrained 
problem leads to exponential time algorithms. For this reason, 
we use an alternative method developed by the authors [4] 
and Kumar and Kumar [9] whereby the achievable region 
is bounded in terms of a new polyhedron Q that involves 
a number of variables and constraints which is quadratic in 
the number of customer classes. We establish in this paper 
that the achievable region is equal to the image of such a 
polyhedron Q under a linear mapping into a lower-dimensional 
space. In particular, the side-constrained problem can be now 
solved efficiently as a linear programming problem involving 
the polyhedron Q. As will be shown later, some of the extreme 
points of Q do not correspond to strict priority rules. Thus, 
although we can express any element of Q as a combination 
of its extreme points, this does not solve for us the problem 
we are actually interested in: expressing an element of the 
achievable region as a combination of its extreme points. 
Later in this paper, we will manage to develop a polynomial 
time algorithm for the latter problem; as it turns out, this is 
much more complicated than it might have appeared at first 
sight. 

We refer briefly to some earlier work on variations of the 
Klimov’s problem involving side constraints. Nain and Ross 
[13] consider a multiclass M/GI/1 queue with a single side 
constraint and establish that an optimal policy randomizes 
between two priority policies. Makowski and Shwartz [ll] 
derive similar structural results for the Klimov’ s problem; 
their methods are easily generalized to the branching bandits 
model as well Nevertheless, in the absence of a polyhedral 
characterization of the achievable region, their methods do not 
seem to lead to usable algorithms for computing the optimal 
cost or an optimal policy, especially when more than one side 
constraints are present. 

We wish to summarize at this point the technical contribu- 
tions 

1) 

of this paper: 
We derive a “parsimonious” characterization of the 
achievable region for the branching bandits problem, 
involving only a quadratic number of variables and con- 
straints. This should be contrasted with all previous work 
in which the characterizations involve an exponential 
number of constraints. 

2) We extend the methodology developed in [3] and then 
refined in [4] and [9] to characterize the achievable 
region of stochastic systems with general distributions; 
earlier work could only handle exponential distributions. 

3) We give a polynomial time algorithm to solve the 
branching bandit problem with side constraints. More 
generally, we derive a polynomial time algorithm for 
expressing an element of a polyhedron as a convex 
combination of its extreme points, when the polyhedron 
is specified as the projection of a higher-dimensional 
polyhedron. This algorithm could be of independent 
interest. 

The rest of the paper is organized as follows: In Section 
11, we formally define the problem and establish our notation. 
In Section III, we characterize the achievable region for the 
vector n+ of mean queue lengths as observed on a typical 
service completion time. In Section IV, the same achievable 
region is described as a projection of a higher-dimensional 
polyhedron. In Section V, we provide analogs of the results 
of Sections LII and IV, regarding the achievable region for the 
vector n of mean queue lengths. In Section VI, we discuss how 
to specialize the results of Section V to Klimov’s problem. 
In Section VII, we bring side constraints into the picture 
and establish the structure of optimal policies. In addition, 
we develop a polynomial time algorithm for computing the 
coefficients needed to specify an optimal policy. Section VI11 
contains some concluding remarks. 

II. PROBLEM FORMULATION 
In this section, we define the average cost branching bandits 

problem, as well as the special case known as Klimov’s 
problem. We also define our notation and terminology. 

customer classes and a single server who keeps serving avail- 
able customers. We assume that there is always an available 
customer. At any service completion time, the server chooses 
a customer, say of class i, to serve next. The duration of that 
customer’s service is a positive, arbitrarily distributed, random 
variable Ti. At the time of the service completion, the customer 
just served disappears and is replaced by Nzo, NZ1, . . . , N z ~ ,  
customers of classes 0, 1,. . . , R, respectively, with each NZ3 
a nonnegative integer, arbitrarily distributed, random variable. 
For any i E Ro, we assume that the joint distribution of 
the random variables (Tt, Nz l ,  . . . , N z ~ )  is given and is the 
same each time a class i customer is served. We also assume 
that the realizations of the random vector (T,, NZ1, . . . , N z ~ )  
corresponding to services of different customers (of the same 
or of different classes) are statistically independent. 

The model just described assumes that the service of a 
customer cannot be interrupted, which means that we are only 
considering nonpreemptive policies. Finally, we assume that 
No0 is equal to 1, with probability 1, and that Nzo = 0 for 
every i # 0. Thus, if we start with a single customer of class 0, 
there will always be exactly one such customer; in particular, 
our assumption that there is always an available customer is 
satisfied. 

Let there be given a set Ro = (0, 1, 2, 



BERTSIMAS et al.: BRANCHING BANDITS AND KLIMOV’S PROBLEM 2065 

We now define Klimov’s problem and then argue that it 
is a special case of the branching bandits model. We have 
a single server who serves customers belonging to a set 
R = { 1, . . . , R}  of different customer classes. Customers 
of each class i E R arrive in the system according to 
an independent Poisson process with rate A, and require a 
random, arbitrarily distributed, service time with mean m, and 
second moment CJ,”. The service times of the customers of each 
class are independent and identically distributed. Service times 
of customers of different classes are independent. Finally, 
service times are independent of the arrival process. Upon 
service completion, a class i customer is fed back to the 
system as a class j customer, with probability p2,, or leaves 
the system, with probability pz0 = 1 - p,, . We assume 
again that service is nonpreemptive. At any service completion 
time, the server can choose an available customer, if any, to 
be served next. It can also decide to stay idle. If it decides 
to stay idle, it is natural to stay idle until the “state” of the 
system changes, and this can only happen if there is a new 
arrival. We therefore impose the additional assumption that 
an idle period can only be terminated by a new arrival. We 
would like to point out that the M/GI/l setting is the most 
general setting that one can hope obtaining results for the 
Klimov’ s problem. As a counterexample consider a multiclass 
G/GI/l queue with class dependent service requirements and 
note that conservation laws (in the form of Theorem 5.3) do 
not hold. 

We now indicate how Klimov’s model can be obtained as 
a special case of our variant of the branching bandits model. 
We identify idling in Klimov’s problem with serving a class 
0 customer in the branching bandits model. Since idling is 
supposed to last until the next arrival, TO has an exponential 
distribution with parameter X = X 1  + . . . + XR. In addition, the 
vector (Nol, . . . , NOR) is the j th  unit vector with probability 
X,/X. (This is the probability that the arriving customer that 
interrupts the idling period is of class j . )  We also let No0 = 1 
and N,o = 0 for i # 0. If a class i customer is served, the 
mean service time is E[T,] = m, and the second moment is 
0,”. Finally, NtJ ,  for i ,  j # 0, is equal to the number of class 
j Poisson arrivals during the service time T,, to which number 
we must add one if the customer served was transformed to a 
class j customer. In particular, we have 

R 

(In deriving the last formula, we have used the fact that the 
second moment of the number of Poisson arrivals with rate 
A,, during the service time T, is X~~CJ,” + m,X,.) 

Here upon and for the rest of the paper we develop our 
theory for the more general model of branching bandits. We 
revisit Klimov’s problem in Section VI to show how our 
results can be specialized to it. On a notational comment, all 
the vectors defined in this paper are assumed to be column 
vectors. Let N T ( t )  be the number of class T customers present 
in the system at time t ,  assumed to be a right-continuous 

function of time. In particular, if T is a service completion time, 
then N T ( ~ )  refers to the number of customers right after the 
service completion. The vector N (  t )  = ( N I  ( t )  , . . . , NR ( t ) )  
will be called the state of the system at time t. (By our 
assumptions, No@) is the same for all times and, therefore, 
does not need to be included in the state vector.) Finally, let 
{ ~ k }  be the sequence of service completion times. 

Dejinition 2.1 : 
a) We say that a policy gives priority to class i over class j 

if there is zero probability of choosing a class j customer 
to serve while class i customers are available. 

b) We say that a policy is nonidling if it gives priority to 
class i over class 0, for all i # 0. 

c) For any subset S of { 1, . . . , R}, we say that a policy is 
an S-priority policy if it gives priority to class i over 
class j for every i E S and every j 

d) We say that a policy is a priority policy if it is nonidling 
and there exists some ordering ( i l ,  22, . . . , i ~ )  of the set 
{ 1, . . . , R}  such that the policy gives priority to class zk  

over class &+I, for IC = 1,. . . , R - 1. 

S.  

Assumption A: 
a) TheRxRmatrixNwithentriesE[N,,],i,j  = l , . . . ,  R, 

has spectral radius smaller than one. 
b) The random variables N,, and T, are of exponential type 

for every i and j ;  that is, there exists some X > 0 such 
that E [ e x N t ~ ]  < CO and E[eXTt] < CO. 

Part b) of the above assumption is much stronger than 
needed, but we introduce it to avoid certain technical digres- 
sions. It intuitively states that the random variables involved 
in the model have a finite moment generating function in a 
neighborhood of zero. In the last section of the paper, we 
comment on how this assumption can be relaxed. 

Assumption A guarantees that the stochastic process N ( T ~ )  
is “stable” under all nonidling policies [2]. For a self-contained 
proof, let w = (201, . . . , W R )  be a positive vector and S be a 
positive scalar satisfying 

R 

CEIN,,]lliJ S w , - S ,  i = l , . . .  7 R. 
,=1 

[Such a vector exists by the Perron-Frobenius theorem and 
Assumption A-a).] It follows that for every nonidling policy 
and for every time Tk for which N ( T ~ )  # 0, we have 

R R 

R Thus, N, (T~)w ,  has negative drift away from the origin. 
In particular, if N ( T ~ )  is a Markov chain under the policy 
under consideration (in which case, we say that the policy is 
Markovian), this Markov chain is geometrically ergodic [8], 
[123 and all of its moments are finite under the corresponding 
ergodic distribution. 

Let II+ be the set of all stationary policies that result 
into a discrete-time stochastic process { N ( ~ k ) } r = - ,  with a 
unique stationary distribution satisfying E[N?(rk)] < 00 for 
all i E { 1,. . . , R}. According to the preceding discussion, II+ 
contains all nonidling stationary Markovian policies. For any 
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n 

policy ?r E II+, let n,' be the expectation of N ; ( T ~ )  under the 
corresponding stationary distribution. Let n+ = (n t  , . . . , ni) .  
Let X +  (respectively, X,',) be the set of all vectors n+ 
that can be obtained by considering different policies in II+ 
(respectively, nonidling policies in II+). We will refer to X +  
(respectively, X;) as the achievable region for n+ under all 
(respectively, nonidling) policies. A complete characterization 
of X +  and X &  is obtained in the next section. 

The performance vector n+ refers to the average number 
of customers of each class that are present in the system at a 
typical completion time. Alternatively, we may be interested 
in n, the steady-state mean of N( t ) .  We let II be the set of all 
stationary policies that result into a continuous time stochastic 
process { N ( t ) } E - ,  with a unique stationary distribution 
satisfying E[N?(t)] < 00 for all i E {l,. . . ,R}. Under 
Assumption A, every nonidling policy can be shown to belong 
to II. This is shown in Lemma 5.2. The achievable region for 
n under policies in IT (respectively, under nonidling policies 
in 11) is denoted by X (respectively, by X,i). These regions 
are studied in Section V. 

Table I provides a brief summary of our notation. 

vector of steady-state mean number of customers 

111. DERIVATION OF THE ACHIEVABLE REGION FOR 12' 

The line of development in this section is as follows. We 
first derive a set of linear inequalities that have to be satisfied 
by the vector n+ under every policy. These constraints define a 
polyhedron, and we show that its extreme points are the vectors 
n+ corresponding to priority policies. We then conclude that 
the achievable region is equal to this polyhedron. 

We start with a few definitions. We use xz( t )  to denote 
the indicator function of the event that at time t the server 
is serving a customer of class i. We assume that xi(-) is a 
right-continuous function of time so that x i ( 7 - k )  is one if at 
time Q a class i customer starts being served. For any policy 
in n+. we let 

where the expectation is taken with respect to the stationary 
distribution. The next lemma states that p t  is the same for all 
policies. The proof, as well the proofs of several other results, 
relies on the following formula that describes the evolution of 
the system 

R 

Nz(Q+l) = Nz(d + C X , ( T k ) ( N j Z  - 622) (3) 
J=O 

where S,, is the Kronecker de1ta.l 
Lemma 3.1: The value of p t  is the same for all policies in 

II+ and can be obtained as the unique solution of the system 
of equations 

R 

Strictly spealang, we should have used a notation like N3 ( ~ k )  instead of 
simply NJZ to indicate the fact that N J Z  is selected independently after each 
service completion of a class J customer. 

TABLE I 
NOTATION SUMMARY 

n+ 11 vector of average number of customers at service completions 

and 
R 

Cp,' = 1. ( 5 )  
i=O 

Pruo$ Fix a policy in II+. By taking expectations of 
both sides of (3) with respect to the stationary distribution, we 
obtain (4). Equation (5)  follows from the definition of p?. 

Let p = ( p ; , ' - . , p i ) ,  and let U = (E[NO~];..,E[NOR]). 
Then, (4) can be rewritten as 

p" + p o d  = pl 

where y' denotes the transpose of a vector y. Because of 
Assumption A-a), the matrix I - N is invertible and ( I  - 
~ 1 - 1  = I + N + N~ + . . . is a nonnegative matrix. We 
therefore have p' = pou'(1- N)-' = pow', where w' is the 
nonnegative row vector ~'(1- N ) - l .  Equation (5)  can then 
be used to determine po uniquely. 

For the remainder of the paper, we impose the following 
assumption which is meant to exclude certain degenerate cases. 

Assumption B: For every class i E (0, 1, . . . , R}, we have 

Under Assumption A, the system is stable and we are 
guaranteed that p$ > 0. We then see that Assumption B is 
guaranteed to hold if the vector U is nonzero and the matrix 
I + N + N 2  + . . . is positive. 

a set of parameters f g ,  i E S, by means of the system of 
equations 

p,' > 0. 

Let S be some nonempty subset of { 1 

1 + C E [ N , % I f , + p = f &  j E S .  (6) 
i E S  

Notice that this is a linear system of the form (I - A).  = e,  
where e is a vector with all entries equal to one. Here A is a 
square submatrix of the nonnegative matrix N which has been 
assumed to have spectral radius less than one. It follows that 
the spectral radius of A is also less than one, I - A  is invertible, 
and ( I  - A)-' = I + A + A2 + . . . is a nonnegative matrix. 
This establishes that the coefficients fZj are uniquely defined 
and are nonnegative. We then use (6) once more to conclude 
that the coefficients f &  are in fact positive. We note that fgj 
can be interpreted as the expected number of customers served 
under an S-priority policy until we run out of customers whose 
class belongs to S and if we started with a single customer 
of class j .  
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Theorem 3.2: For every nonempty subset S of R = ( 1 ,  Notice that the equality E [ R s ( T ~ ) ]  = G+(S) is obtained 
. . . , R},  and any policy in lis, we have if and only if 

(7) 
i E S  

where 

Inequality (7) holds with equality if and only if we have an 
S-priority policy. 

Proofi Let Rs(t)  = Ci,sfANz(t). We use ( 3 )  and 
obtain 

R 

iES j =0  

R 

3=0 2ES 

We square both sides of (8), use the fact x 2 ( ~ k ) x 3 ( ~ k )  = 
S Z 3 x z ( ~ k ) ,  and take expectations with respect to the stationary 
distribution corresponding to the policy under consideration. 
Using also the fact E[Rg(~k+l ) ]  = E [ R ~ ( T ~ ) ] ,  we obtain 

1 - SZ,) 

2 E S  

Notice that the second term in the left-hand side of (9) is 
2 G + ( S ) ,  by definition. We now have 

r 1 

The first inequality follows from C j c s x j ( ~ k )  5 1, the first 
equality from (6) since for j E S it holds CiEs fA(E[Nj i ]  - 
S;j) = -1, the second equality from (9), and the third equality 
because i E S and j @ S imply S i j  = 0. 

R s ( 4 C  X J ( 7 k )  = 0, W.P.1 
3 ES 

equivalently, if and only if N , ( T ~ ) x ~ ( T ~ )  = 0 for all z E S 
and j $2 S.  This is equivalent to having an S-priority policy. 

Notice that nonidling policies are the same as R-priority 
policies. It follows that the inequality E,"=, f&n: 2 G+(R) 
becomes an equality if and only if the policy is nonidling. 

Theorem 3.2 provides us with 2R - 1 linear inequality 
constraints on the vector n+, one for each nonempty subset of 
{ 1,  . . . , R}. These inequality constraints define a polyhedron 
in R-dimensional space, which we will denote by P+. Let us 
also define P,', as the subset of P+ on which the equality 

f&n: = G+(R) holds. (Note that P,', is a bounded 
polyhedron while P+ is unbounded.) Theorem 3.2 establishes 
that X +  c P+ and X ;  c PA. We wish to show that X +  
= P+ and X ;  = PL; that is, that we have a complete 
characterization of the achievable region for the branching 
bandits problem under general (or nonidling, respectively) 
policies. Our first step is to characterize the extreme points 

Theorem 3.3: A vector is an extreme point of the set P,', 
if and only if it is equal to the performance vector n+ 
corresponding to some priority policy. 

Proofi Given a set of inequality constraints that define a 
polyhedron, we say that a constraint is active at those points 
at which it is satisfied with equality. Recall that an element of 
a polyhedron in RR is an extreme point if and only if there are 
R linearly independent constraints that are active at that point. 

Consider the priority policy corresponding to the ordering 
( 1 ,  2 ,  . . . , R). This policy is an S-priority for every set S of 
the form (1,. . . , 2 )  and the inequality CzES f&n; 2 G+(S) 
is satisfied with equality for every such S. Notice that the R 
equalities thus obtained form a triangular system of equations 
and are therefore linearly independent. It follows that the 
vector n+ is an extreme point of P,',. The same argument 
applies to any other priority policy. 

To show that every extreme point corresponds to a priority 
policy, we observe that PL satisfies the definition of an 
extended polymatroid (see [l] for a definition) and the result 
follows from Theorem 1 of [2]. We provide here an alternative 
self-contained proof. 

Let us introduce the additional assumption that under any 
policy and for any i , j ,  there is a positive probability that 
customers of classes i and j may coexist. Consider an extreme 
point of P,', that corresponds to some priority policy, say the 
priority policy corresponding to the ordering (1 ,2,  . . . , R). 
Theorem 3.2 implies that the constraints C,,sf$znt = 
G+(S) are active, for every S of the form S = { 1,. . . , i } .  
If there are more than R active constraints at n+, we must 
also have ~ , , , f & n ~  = Gt ( S )  for some S C {1, . . . ,R} 
which is not of this form; in particular, there exist i and j such 
that z < 3 ,  z @ S and j E S.  Thus, j must have priority over i .  
On the other hand, since i < j ,  i must also have priority over 
j. This can only happen if customers of classes z and j can 

of P,',. 
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never coexist under the priority policy under consideration, 
which contradicts our earlier assumption. We conclude that 
there are exactly R active constraints at every extreme point 
corresponding to a priority policy. 

We say that two extreme points are adjacent if there are R- 1 
constraints that are active at both points. Since the constraint 
corresponding to S = { 1, . . . , R} is satisfied at all points, it 
follows that an extreme point can have up to R - 1 adjacent 
extreme points. We say that two priority policies are adjacent if 
one can be obtained from the other by interchanging the order 
of two classes that are ordered consecutively. [For example, 
the priority ordering (1, 2, 3,  4) is adjacent to (1, 3 ,  2, 4) 
but is not adjacent to (1, 3, 4, 2).] It is seen that for adjacent 
priority policies there are R - 1 common active constraints, 
and therefore the corresponding extreme points are adjacent. 
We conclude that if we have an extreme point that corresponds 
to a priority policy, all of its R - 1 adjacent extreme points 
correspond to priority policies. It is well known that if we keep 
moving from an extreme point of a bounded polyhedron to an 
adjacent extreme point, every extreme point can be reached. 
Therefore, all extreme points of PL correspond to priority 
policies. 

Let us now return to the general case in which we allow the 
possibility that two customer types may have zero probability 
of coexisting. Let us introduce a perturbed system, parameter- 
ized by a small positive parameter t and for which the random 
number Nz3 (E)  of type j customers due to a service completion 
of a type i customer is given by 

with probability 1 - E ,  

with probability E 

where the NZ3 have the same distribution as in the original 
system. Given our assumption that the matrix N has spectral 
radius less than one and using the continuity of the spectral 
radius, it follows that the perturbed system also satisfies the 
same assumption. Note that if E = 0, we recover the original 
system. 

Consider the coefficients f & ( ~ )  defined for the perturbed 
system as in (6) and let P,',(E) be the associated polyhedron. It 
is easily seen that the moments of NZ3 (E)  depend continuously 
on E .  Hence ~ A ( E )  and G+(S, E) are continuous functions of 
E .  Thus, all of the coefficients involved in the linear constraints 
that define PA(,) depend continuously on E. 

Consider an extreme point n+ of PA. It is easily shown that 
fit is the limit, as E 1 0, of an extreme point n+(e )  of PA(€). 
Given what we have proved earlier, it follows that for every 
E > 0, .+(e) is the performance vector associated to some 
priority policy. Since there are finitely many priority policies 
and by restricting to a sequence of E'S that converges to zero, 
we can assume that every .+(E) is the performance vector of 
the same priority policy, for the €-perturbed system. Without 
loss of generality, let us assume that this is the priority policy 
corresponding to the ordering 1, . . . , R. Theorem 3.2 yields 

By taking the limit as E converges to zero, we obtain 

Cfzznt =G+(S) ,  S = { l , . . . , k } ,  k ,n,  
z E S  

Using Theorem 3.2 once more, we conclude that n+ is the 
performance vector associated to the same priority policy, for 
the original system. 

Proof: From Theorem 3.2, we have Xn', c PL. Consider 
a collection of priority policies d, . . . , 7rK whose performance 
vectors are d , .  . ' , xK. Consider also a policy that at the 
beginning of every busy period2 decides with probability p ,  
that policy n-' will be followed for the entire duration of the 
busy period. It is then easily seen that this is a nonidling policy, 
and its performance vector is Cz=lpz~2. This establishes 
that every element of P L  is the performance vector of so 
nonidling policy of this type. 

We note that in the preceding proof, a value of K larger than 
R + 1 is never needed, by virtue of Caratheodory's theorem. 

We now turn our attention to policies that are not necessarily 
nonidling. We first extend Theorem 3.3. 

Theorem3.5: The polyhedra PL and P+ have the same 
set of extreme points. 

Proof: At any extreme point of P: there are R linearly 
independent active constraints, and therefore we also have 
an extreme point of P+. We now prove the converse. If 
P+ has more extreme points than PL, then there are two 
adjacent extreme points of P+ such that one, call it 2, is 
an extreme point of PA and the other, call it y,  is not. 
Assume for simplicity that IC is associated to the priority 
ordering (1, 2, . . . ,R)  . From the point IC, we caR move to 
an adjacent extreme point (along an edge) if exactly one 
of the active constraints becomes inactive. If any constraint 
other than the constraint CE,f,',n,' 2 G+(R)  becomes 
inactive, we end up at another extreme point of PL. Therefore, 
to reach y, the constraint E,"=, f&,nT 2 G+(R)  
become inactive. Recall that the active constraints 
point z form a triangular system of equations. There 
making the constraint f&n: 2 G+(R) inactive, the 
variable n+ becomes free. The value of that variable can be 

R. increased without limit without violating any of the constraints 
associated with P+ . This means that the corresponding edge 
that starts at IC does not end at another extreme point. 

We win next characterize the points that lie on infinite edges 
of P+. We first need to define a set of policies pertinent to 
this problem. Consider an ordering CJ of the classes 1, . . . , R, 
and relabel the classes such that CJ = (1, 2, + . . , R). Let n ( p )  
be the policy under which: 

a) Class a always has priority over class j ,  if i < j 5 R. 
b) The policy never idles when there are available cus- 

c) Whenever all available customers are of class R, there 

Corollary 3.4: There holds X A  = P,',. 

K 

tomers of some class i < R. 

is a constant probability p of idling.3 
We refer to all such policies as almost-priority policies. 

'A busy period starts at a moment where a zero state vector becomes 
nonzero; it ends at the first time that the state becomes again zero. 

3Note that this is the same as the Markovian policy that uses the priority 
ordering (1, 2, . . , R, 0) with probability 1 - p and the priority ordermg 
(1, 2, . . , R - 1, 0, R) with priority p 
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Recall that the vector nS associated to a priority policy can 
be obtained by solving a triangular system of linear equations. 
We will now describe a procedure for determining the vector 
n+ associated with an almost-priority policy. Let us consider 
the almost priority policy ~ ( p )  associated with the ordering 
(1, . . . , R). Under this policy, each time that there are only 
customers of class R available, we will have 

the relation 
R 

f & ( P ) n a ( P )  

Nz(Tk+l) = Nz(Tk) + (l - X)(NRz - SzR) + XNOz, 

$ = I ,  . . .  , R  
where x is a binary random variable which is independent 
of everything else and is equal to one with probability p .  
Equivalently 

NZ(Tk'1) = NZ(Tk) + (1 - X ) N R Z  + X(N0Z + SRZ) - 6R%, 

i = 1 ,  . . .  , R. 
This implies that under policy ~ ( p ) ,  the system evolves exactly 
the same as if there were no idling and N R ~  were replaced 
by l ? ~ ~  = (1 - X ) N R ~  + x(NoZ + S f i 2 ) ,  for i = 1 , . . . , R  . 
Therefore, the vector n' associated with an almost priority 
policy can be found by evaluating the vector nt associated 
with a priority policy in a new branching bandits problem 
with a different distribution for the random variables N R ~ ,  i = 
1, . . . , R. In the new branching bandits problem, the matrix N 
is replaced by a matrix fi(p) that differs from N only at the 
last row; in particular, the (R,  j) th entry of fi(p) is equal to 

Let us define p* = pt/(p,' + p i ) ,  where the coefficients 
p a  are those corresponding to the original matrix N ,  as in 
Lemma 3.1. We then have the following result. 

Lemma 3.6: The spectral radius of fi(p) is less than one 
for p < p* and equal to one for p = p*. 

Proof: We start from the fact that the coefficients p,' 
satisfy (4), use the definitions of N ( p )  and p*,  and do 
some straightforward algebra to verify that the vector ( p t ,  

eigenvalue one. In addition, notice that the determinant of 
I - fi(p) is affine in p .  Therefore, for every p # p * ,  the 
determinant of I - fi(p) is nonzero and the spectral radius of 
fi(p) is different from one. Since the spectral radius is less 
than one for p = 0 (Assumption A), a continuity argument 
implies the same for all values of p between zero and p*. 

Under the almost-priority policy ~ ( p ) ,  the values of p,' 
and n,' remain the same for i = 1, . . , R - 1. It remains 
to determine how p i  and nk vary with p ,  and we will be 
using the notation p i ( p )  and n i ( p ) ,  to make this dependence 
explicit. In addition, we let f & ( p ) ,  i = I, . . . , R, stand for 
the unique solution of (6) when Nz3 is replaced by NzJ ( p )  and 
when S is equal to R = (1, . . . , R}. Using Cramer's rule, we 
see that f L z ( p )  is the ratio of two affine functions of p ,  with 
the denominator being the determinant of I - fi(p). Since the 
latter determinant becomes zero when p = p*,  we conclude 
that the denominator can be taken to be p" - p .  

We also note that (1 - p ) p i ( p )  = p;. (Intuitively, this 
expresses the fact that a fraction 1 - p of all class R services 
in the modified model corresponds to class R services in the 
original model.) Concerning n i ( p ) ,  it can be determined from 

(1 - P)E[NRJI + pE[N031 + PSR.7. 

pz + , . . . , p i F l ,  p$ + p i )  is a left eigenvector of N ( p * ) ,  with 

Using our earlier discussion on the dependence of p,f(p) and 
f & ( p )  on p ,  we conclude that n i ( p )  is a rational function of 
p with a term of the form p* - p appearing in the denominator. 
This implies that n i ( p )  tends to infinity as p increases to p*.  
In addition, p can be determined from n i ( p )  by solving a 
polynomial equation in p .  

We summarize this discussion in the following theorem. 
Theorem 3.7: Any point on an infinite edge of P+ is the 

performance vector of some almost-priority policy. In addition, 
the value of p that corresponds to any given point can be 
determined by solving a polynomial equation. 

Using the same argument as in the proof of Corollary 3.4, 
we conclude the following. 

Corollary 3.8: There holds Xf = Pt. 

IV. A PARSIMONIOUS REPRESENTATION 
OF THE ACHIEVABLE REGION 

The polyhedra P' and PL provide an exact representation 
of the achievable regions X +  and X;, respectively. Their 
drawback is that they are specified in terms of an exponential 
number of constraints. In this section, we use the approach 
of [3] and [9] to obtain an equivalent but more compact 
representation. This new representation involves R( R + 1) 
variables but only O ( R 2 )  linear constraints. 

The achievable region will be represented in terms of the 
auxiliary variables 
Ij2 = E[XJ(Tk)N2(Tk)], i = I,*.. ,R ,  j = O,. ' . ,R.  

* (10) 
Let 1 stand for the R(R + 1)-dimensional vector with com- 
ponents I z3 .  Notice that Ij2 = 0 if and only if N z ( ~ k )  > 0 
implies x , ( T ~ )  = 0; that is, if and only if class i has priority 
over class j. In particular, a policy is nonidling if and only if 
Io, = 0 for all i # 0. 

Theorem 4.1: For every policy in ITf, the vector I belongs 
to the polyhedron Q' defined as the set of all nonnegative 
vectors x with components zJ2 ,  j = 0, ... , R, i = 1, ... , R, 
that satisfy the following linear equality constraints 

R R 

P,SE[(NJZ - S j z ) 2 ]  + 2c ZJ2E[NjZ - S,,] = 0, 
j =O j=0 

and 
2 1 1 ,  . . .  , R  (11) 

R R 

Z J T E [ N j T '  - 4741 + ZJT/E[NJT - 6 j T I  
j=0 J =O 

R 

+ P,+E[(NjT - 6 J T ) ( N j T (  - &'I = 0, 
j=0 

r ,  r' = 1,. . . , R. (12) 
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Proof Consider the evolution equation (3). We square 
both sides, we use the fact Xz(Tk)X,(Tk) = &,xz(7k:), and we 
take expectations with respect to the stationary distribution 
corresponding to the policy under consideration. Using also 
the fact E[N,(7k+l)] = E[NZ(7k)], we obtain (11). (In the 
derivation of this formula we have also used the independence 
of N,, from the state of the system.) 

To derive (12) we use (3) to derive a recursion for 

Note that for every policy in II+, we have 
NT(~k+l)Nr, (Q+I) and proceed similarly. 

R 

n,' = C ~ J ~ ,  a = l , . . . ,R .  
,=0 

In particular, n+ belongs to the set U+ defined by 

The set U+ is the image of the polyhedron Q+ under a 
particular linear mapping. Therefore, U+ is also a polyhedron. 

We have already shown that the achievable region X+ is 
contained in U+. It has been shown in [4], in much greater 
generality, that the use of auxiliary variables, as in the proof 
of Theorem 4.1, always provides a smaller polyhedron than 
the one obtained using the method of the preceding section; 
thus, X +  c U+ c Ps. Since we have shown earlier that 
X +  = P+, we have the following main result. 

Theorem 4.2: There holds P+ = U+ = X+.  
Theorem 4.2 states that the achievable region X +  is the 

image of the polyhedron Q+. Given that Q+ involves a 
much smaller (quadratic instead of exponential) number of 
constraints, this representation is much more suitable for the 
development of efficient algorithms. 

A natural question to raise at this point is the following: 
is it true that every element of Q+ is equal to the vector I 
associated to some policy in II+? Interestingly enough, the 
answer is negative, as explained in the Appendix. In other 
words, the set Q+ is larger than the achievable region for 
the vector I ,  even though its image is exactly equd to the 
achievable region for the vector n+. In particular, not every 
extreme point of Q+ can be associated with an extreme point 
of P+ and a priority policy. 

If we are interested in nonidling policies, the preceding re- 
sults are modified as follows. Notice that a policy is nonidling 
if and only if 10, = 0 for all i # 0. We define Q:, as the 
subset of Q+ in which the additional constraints zo, = 0 hold 
for i = 1, . . . , R. By using the same reasoning as before, we 
conclude that XA = U s  nz = P+ nz ' 

v. ACHIEVABLE REGION FOR THE MEAN QUEUE LENGTHS 
In this section we characterize the achievable region X 

(respectively, X,,) for the vector n of mean queue lengths, 
under policies in II (respectively, under nonidling policies in 
II). In fact, we obtain two different characterizations which 
are similar to the characterizations of X +  in terms of the 
polyhedra P+ and Q+. 

We first establish a connection between the steady-state 
mean number of customers n, and the mean number n,' of 
customers at a typical service completion time. Let us denote 
by m3 the expectation of the service time T3 for a customer 
of class j E { O , - . .  ,E} .  

Lemma 5.1: For any policy in II and for any a E (1 ,  
. . . , R}, we have 

R c,=o % I 3 2  

C,=O m3 P, 
R + '  n, = 

Proof: The general formula for passing from a Palm 
distribution to a stationary distribution (see, e.g., [17, p. 2261) 
states that n,, the steady-state mean of N,(t), is given by 

where the expectations are taken with respect to the stationary 
distribution of the discrete-time Markov chain N(7k).  We have 
N,(a) = N,(Q) for 0 E [rk, ~ k + l ) ,  which leaves us with 

E [ ( ~ k + i  - ~k)Nt(~k)] 
E[Tk+l  - 7 k I  

R Note that E[q+l - 7 k ]  = m,pT. Furthermore 

E[(n+1 - .k:)N(n)l 
R R 

which completes the proof. 
We next show that under Assumption A any nonidling 

stationary policy belongs to II. 
Lemma 5.2: Under Assumption A, any nonidling sta- 

tionary policy results into a continuous-time stochastic 
process {N(t)},"=-, with a stationary distribution satisfying 
E[N;(t)] < CO for all z E (1,. . . , R}. 

Proof: We follow the same technique as in the preceding 
proof. We have 

N,?- (a )  d o ]  

where the expectations in the right-hand side are taken with re- 
spect to the stationary distribution of the discrete-time Markov 
chain N ( Q )  and the expectations in the left-hand side are 
taken with respect to the distribution of the continuous-time 
process N( t ) .  As in the preceding proof, we have N,(o) = 
N,(T~) for o E [ ~ k ,  T ~ + I ) ,  which implies 
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since we have argued in Section I1 that the discrete-time 
Markov chain N(7k) is geometrically ergodic. 

We now define a polyhedron U as the image of Q+ under 

We interchange r and r’ in the second term of (15) and add 
the result to (16) to obtain 

, -” I 

the linear mapping suggested by Lemma 5.1. That is 

If we are interested in nonidling policies only, we define U,, 
similarly, except that Q+ is replaced by Q:,. Theorem 4.1 
and Lemma 5.1 readily imply that the achievable region X 
(respectively, X,,) is contained in U (respectively, Un,). We 
intend to show that U = X and U,, = X,,. Our first step in 
this direction is to derive polyhedra P and P,, with structure 
similar to the polyhedra P+ and P: that were derived in 
Section 111. 

Let S be a nonempty subset of { 1,. . , R}. We define a set 
of parameters fsZ, i E S ,  by means of the system of equations 

m, + CE[N,,Ifs. = f S J ,  v j  E s. (13) 
2 E S  

This system of equations has a unique solution, which is 
positive, for the same reasons that were given when the 
coefficients f &  were defined. 

Theorem 5.3: For every nonempty subset S of R = (1, 
. . . , R}  and any policy in IT, we have 

i E S  

where 

;~;E[(C, ,S  f s r (NJr  - 6j,.,>’] 

cw=o m w P w  R + G ( S )  = 

Inequality (14) holds with equality if and only if we have an 
S-priority policy. 

Proofi Consider a policy 7i E ll and a subset S of R. 
Then, the vector I ,  with components I,, satisfies (1 1) and (12). 
We multiply (12) by fsrfsrl and sum over all T ,  r’ E S such 
that r > T’ .  We then obtain 

. E[(NjT - S,,)(Nj,/ - S,,/)] 0. (15) ) 
We also multiply (11) by f:,, and sum over all r’ E S to 
obtain 

R /  

which yields 

where A is defined by A = C:=om,pL. Using (13), we 
obtain 

mj Ij, 5 An,. 
j € S  

Thus, we obtain 

r E S  

because I,,, fsr, are nonnegative and S,,I = 0 for j S and 
r’ E S. It is easily checked that the inequalities in (19) hold 
with equality if and only if I,, = 0 for j S and r E S, 
that is, if and only if the policy under consideration is an 

Since nonidling policies are the same as R-priority policies, 
the inequality CzERf~,n i  2 G ( R )  becomes an equality if 
and only if the policy is nonidling. Theorem 5.3 provides 
us with 2 R  - 1 linear inequality constraints on the vector 
n = (n1, . . . , n ~ ) .  These constraints define a polyhedron in R- 
dimensional space which we denote by P. We also define P,, 
to be the subset of P where the equality fR,n, = G ( R )  
holds. Theorem 5.3 asserts that X,, c P,, and X C P. 

The following is our main result. 
Theorem 5.4: 

a) A vector is an extreme point of the set P,, if and only 
if it is equal to the performance vector n corresponding 
to a priority policy. 

b) The polyhedra P and P,, have the same set of extreme 
points. 

c) Any point on an infinite edge of P is the performance 
vector of some almost-priority policy. 

d) There holds P = U = X and P,, = U,, = X,,. 

s-priority . 
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Pro08 (Outline) The proof of parts a), b), and c) is iden- 
tical to the proof of Theorems 3.3, 3.5, and 3.7, respectively. 

Recall that we have already shown that X c U.  Further- 

that every element of U belongs to P. Therefore, we have 
pnz. On the Other handy part where Q:, is a polyhedron described in terms of a quadratic 

a) of this theorem states that the extreme points of P,, belong number of and constraints where is a known 

of this theorem imply that X = P. 

available a parsimonious representation of P,, of the form 
(Theorem 5.3) 

more, in the course of the proof of Theorem 5.3, we showed Pnz = unz = {J’z I E Q,’,} 

and xnz 
to x ~ Z ,  and it follows that x,Z = pnz‘ ParCS b)-c) linear mapping. It follows that problem (20) is equivalent to 

the linear programming problem 

VI. KLIMOV’S PROBLEM REVISITED 
In the branching bandits problem, the vector N ( t )  changes 

only at service completion times. In contrast, in Klimov’s 
problem, external arrivals are Poisson and will generically 
occur during a service interval. This makes no difference if 
we are only watching the system at service completion times. 
In particular, all of the results in Sections III and IV can be 
specialized to Klimov’s problem by using (I) and (2). 

Let us now consider the mean number of class i customers 
present in the system at some typical time t. This is equal to 
the mean number n,, as determined from the branching bandits 
model, plus the expected number a, of class i customers that 
have arrived since the last service completion, which occurred 
at some time T .  We have 

R 
ai = C P r  ( X j ( t )  = l)XiE[t - 7 I X j ( t )  = 11. 

j = O  

Notice that 

In addition, E[t  - T I x3( t )  = 11 = aj2/2m,, and this 
determines a, completely. Notice that a, is the same for all 
policies in n. 

VII. BRANCHING BANDITS WITH SIDE CONSTRAINTS 
In this section, we consider the branching bandits problem in 

the presence of additional linear constraints on the vector n of 
mean queue lengths. Let these side constraints be of the form 
An 2 b, where A is a matrix of dimensions L x R. To keep 
the discussion simple, we only consider nonidling policies. In 
view of our characterization of the achievable region (Theorem 
5.3), the cost of an optimal policy obeying the side constraints 
can be found by solving the linear programming problem 

minimize c’x 

subject to LG = F z  

Ax 2 b 
z E Q:, 

which is polynomial time solvable because it only has polyno- 
mial number of variables and constraints. We thus assume that 
we have computed, in polynomial time, an optimal solution 
x* of problem (20). 

Next, we express z* as a convex combination of at most 
R + 1 extreme points of P,,. This is always possible, by 
Caratheodory’s theorem. (Later in this section, we show 
that this can be accomplished in polynomial time.) Let 
U’, . . . , uRtl be these extreme points. Consider the problem 

R+1 

minimize c3 (C’UJ) 

j=1 

R+1 

subject to Cj = 1 
3=1 

RS 1 

c3(AuJ) 2 b 
3=1 

e, 2 0. 

Since there is a feasible solution of this problem for which 
z* = C j  <,U’, the optimal cost is the same as in problem 
(20), and any optimal solution of the new problem is also 
an optimal solution of the original problem (20). Consider an 
optimal basic feasible solution of the new problem, that is, at 
least R + 1 constraints are satisfied with equality. (Such an 
optimal basic feasible solution can be found in polynomial 
time because we have O ( R )  variables and constraints.) In 
particular, at least R + 1 - L - 1 of the constraints cJ 2 0 must 
be satisfied with equality, which means that at most L + 1 of 
the variables c, are positive. Thus, an optimal solution of the 
original side-constrained problem (20) can be expressed as a 
convex combination of no more than L + 1 extreme points 
of P,,. Equivalently, an optimal policy can be obtained by 
randomizing between no more than L + 1 priority policies. 
We summarize this discussion in the following theorem. 

Theorem 7. I :  If the side-constrained problem (20) is feasi- 
ble, then there exists an optimal policy which at the beginning 
of each busy period selects one of L + 1 priority policies, 
according to some fixed probabilities, and follows this policy 

minimize C’LG 

subject to n: E P,, 
Ax 2 b. (20) 

We assume that this problem has a feasible solution. 
The linear programming problem (20) is hard to solve 

because the polyhedron P,, is described by an exponential 
number of constraints. We recall, however, that we have 
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throughout that busy period. Furthermore, such a policy can 
be found in polynomial time. 

The only part of the proof of Theorem 7.1 that we have 
not yet presented is the fact that once an optimal solution z* 
is available, it can be expressed as a convex combination of 
extreme points U',  . . . , uR+' of Pni, in polynomial time. w e  
now show how this can be accomplished. 

Let U' be an extreme point of P,,. Such an extreme point 
can be found by choosing an arbitrary priority policy and 
evaluating its performance vector. If x* = U', we are done. If 
not, let us consider the line from U' to x*, and let us consider 
the point at which this line exits the feasible set P,,. Such 
a point exists because P,, is bounded and can be found by 
solving the linear programming problem 

maximize t 
subject to II: = z* + t(x* - U ' )  

x = F z  
z E Q;ti. (21) 

This linear programming problem can be solved in polynomial 
time. Let (d, z ' ,  t ') be its optimal solution, where d is 
easily seen to be unique and different from ul. The point IC' 
lies on the boundary of P,, and in particular, it must lie on a 
facet of P,,. Furthermore, since z1 # U', there exists a facet 
of P,, such that 2' lies on that facet but u1 does not. We will 
now proceed to find such a facet. 

One way of finding a facet of Pn, with the desired properties 
is to check each one of the constraints 

that define PnZ to see whether they are satisfied by z1 and ul. 
This would take exponential time, however, because there are 
exponentially many such constraints and a different approach 
is needed. 

Consider the related to (21) linear programming problem 
in (22) 

maximize t 
subject to z = E* + t(z* - U ' )  

x = F z  
z E Q2i. (22) 

Let us view the optimal solution (9', i ', il) of the linear 
programmingA problem (22) as a function of the right-hand 
side vector b = (?*, b'), where b' is the right-hand side 
vector corresponding to the constraints z = F z  and z E Q:%. 
Let us consider small perturbations of E* of the form 2* = 
IC* + Cz1E2eZ, where E ,  > 0, i = 1,. . . , R are small enough 
and e, denotes the ith unit vector. Using the sensitivity analysis 
of linear programming, and in the absence of degeneracy, the 
optimal basis, denoted by B is unique and is not altered for the 
above small perturbations of k*. Thus, we have (g', i ', i')' = 

U-'&, and by decomposing U-',  we obtain 

From the above equation we obtain that 
= B'E* + B2b'. 

R Substituting 9* = x* + 
(d, z' ,  t ') optimally solves (21) we finally obtain 

€%ez and using that the vector 

R 

9' = z1 + Cc,Rle, .  (23) 

In other words, 9' is locally a linear function of E*,  and this 
linear function can be found very easily, as in (23) .  The range 
of this function is the desired facet. That is, the desired facet 
is spanned by the vectors {Ble,; i = 1, e . ,  R}. Given this, it 
is not hard to obtain a constraint of the form E,"=, a,z, = p 
which is satisfied by all the points of the facet. In the case 
where (d, zl, t ') is a degenerate optimal solution of (21), 
we first do a preliminary perturbation of z* to come back 
to the nondegenerate case and then use the above outlined 
approach. It is not hard to verify that all of the above can be 
accomplished in polynomial time. Let, for example, R = 3 
and assume that the above outlined procedure yields the facet 
~ 1 x 1  + a353 = p. By the structure of P,, (see Theorem 5.3), 
this facet corresponds to (1, 3)-priority policies. 

Once we have found a facet of P,, to which d belongs, 
we now proceed to express x' as a convex combination of R 
extreme points of that facet. This is a problem of the same type 
as the one we were trying to solve but in one dimension less. 
For the example given above ( R  = 3), we let u2 be an extreme 
point lying on the facet alsl + a323 = p. Such an extreme 
point can be found by choosing an arbitrary (1, 3}-priority 
policy, say the ordering (3, 1, 2). We thus have a recursive 
algorithm, consisting of R stages. Each stage only takes 
polynomial time, and the desired result has been established. 
That is, we have expressed x* as a convex combination 
of extreme points U',  . . . , uR+' of P,, , in polynomial time. 
Moreover, from the above discussion it is clear how policies 
are associated with these extreme points. 

,=I 

VIII. CONCLIJDING REMARKS 
We have presented a generalization of the potential function 

method developed in [4] to describe the achievable region of 
stochastic systems with exponential distributions to systems 
with general distributions. A challenging open question is to 
extend the method further to queueing networks with general 
distributions. 

Our main result in the paper is a polynomial reformulation 
of the branching bandit problem. An exponential character- 
ization of the achievable region has been known partially 
through the work of Tsoucas [16] and explicitly through 
the work of Bertsimas and Niiio-Mora [2] .  In particular, the 
achievable region is characterized as an extended polymatroid. 
This raises the question of whether an arbitrary extended 
polymatroid is always a projection of a higher dimensional 
polyhedron involving a polynomial number of variables and 
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constraints. Since polymatroids and extended polymatroids 
appear in several applications in combinatorial optimization, 
such a reformulation will be very useful for combinatorial 
problems with side constraints. 

We finally indicate how to relax Assumption A-b) which 
required the probability distributions of the random variables 
of interest (NzJ and T,) to be of exponential type (i.e., with 
finite moment generating function in a neighborhood of zero). 
Let us only assume that each T, has finite mean and each 
NZ3 has finite mean and variance. If these random variables 
are not of exponential type, let us approximate them by 
random variables of exponential type with the same means 
and variances, and let us take the limit as this approximation 
becomes better and better. For each approximant, the results 
we have proved establish that the achievable region will be the 
same; this is because the constraints that define the achievable 
region only depend on the means and variances of Nzj and the 
mean of T,. Taking the limit, and using a continuity argument, 
the same achievable region is obtained in the limit. 

APPENDIX 
We show here that not every point in the polyhedron Q:* 

is equal to the vector I associated to some nonidling policy 
in D+. 

Consider a problem in which R = 3, and suppose that there 
is a positive probability that customers of all three classes may 
coexist, no matter what policy is used. (For this, it is sufficient 
to assume that E [ N o l N o z N 0 3 ]  > 0.) The polyhedron Q:, is 
described in terms of nine variables zz3,  i, j = 1, 2, 3, and 
six constraints. 

If we impose the additional constraints 2 2 1  = 0, 231 = 0, 
and 2 3 2  = 0, we obtain an extreme point z* of Q:,. This 
extreme point is in fact the vector I associated with the priority 
policy corresponding to the ordering (1, 2, 3). 

Let us now consider the following policy. We follow the 
priority ordering (1, 2, 3) except that whenever NZ = 0, class 
3 gets priority over class 1. With this policy, we will still have 
221 = 0 and 232 = 0 but 231 will be positive. This shows that 
the set of points ( 2  E Q:z I 221 = 0 ,  232 = 0) is an edge of 
Q:,. Given that Q:, is bounded, if we start at z* and move 
that edge, we must eventually hit another extreme point. At 
that extreme point, at least one of the variables 211, 222, 233, 
212 ,  2 2 3 ,  or 213 is equal to zero. We will argue such a vector 
cannot be the vector I corresponding to a policy. 

Indeed, if 2 1 2  = 0, then the extreme point can only be 
achieved by a policy that simultaneously satisfies 121 = 0 and 
112  = 0. Such a policy must give priority to class 1 over class 
2 and to class 2 over class 1, which is impossible given our 
assumption that customers of these two classes will sometimes 
coexist. If 2 2 3  = 0, the extreme point is not achievable for 
similar reasons. If 213 = 0, the extreme point can only be 
achieved by a policy that satisfies 121 = 0, 132 = 0, and 
I13  = 0. Such a policy would reach an impasse at times when 
customers of all three classes are present. Finally note that 
I,, > 0 for every policy because otherwise class i customers 
would be never served. Thus. extreme Doints at which z,, = 0 

for some i are not achievable either, and this concludes the 
argument. 
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